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Abstract

The atomic structure of pure amorphous Re and Re-Tb amorphous alloys was studied by the
molecular dynamics method. Analysis of the atomic structure of amorphous metals was
performed within the framework of percolation theory and fractal geometry. The structure of
amorphous metals consists of dense and sparse areas. We established that the dense areas form
the fractal skeleton of an amorphous material. The distribution of clusters by size, the
probability of an atom belonging to the largest cluster, the fractal dimensionality of the
percolation cluster and the concentration dependence of the percolation radius were calculated.
Correlation between some physical properties of amorphous metals and their cluster structure

was established.

1. Introduction

Why does an amorphous structure consist of dense and sparse
areas while a crystalline one is homogeneous? The point is that
distances between atoms of a crystalline structure are strictly
determined (translation vectors a, b in figure 1). Statistical
dispersion of interatomic distances in an amorphous structure
(ry, r{, r{" in figure 1) allows one to speak about a mean
interatomic distance r; only. Some atoms of amorphous
structure are closer to each other than r, so they form clusters.

There are a large number of structural models for
amorphous materials [1]. Many authors have tried to find a
rule to construct an amorphous structure. Such rules are well-
known for crystals (translation symmetry) and for quasicrystals
(rotational symmetry). But in amorphous structures the laws
of spatial atomic arrangement are unknown. There have been
many cluster models in which the clusters are compact dense
aggregates. We established that dense areas of amorphous
structure are not compact. If we call the dense areas clusters,
they extend up to the whole material volume and are porous
and fractal.

In this work we used a new method to analyze the structure
of amorphous metals based on the application of percolation
theory and fractal geometry [2—4]. Percolation theory is based
on lattice models. Percolation processes on regular lattices [5]
and fully irregular lattices [6, 7] are already well studied.
A regular lattice looks like a crystalline structure, while a
fully irregular lattice looks like the irregular structure of a
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Figure 1. Interatomic distances in crystalline and amorphous solids.

gas. Amorphous materials have no long-range order, unlike
crystals, but they are not as disordered as a gas. They have
short-range order. Amorphous structures are practically never
studied by the percolation theory, so we expect the appearance
of new regularities connected with the presence of short-range
order only.

2. X-ray diffraction study and computer simulation
technique

There are no stable one-component amorphous metals that
would be the best object for studying the density percolation.
Fortunately there are some amorphous alloys, such as the Re—
V system, where the atomic radii of both components are
almost equal: 0.274 and 0.272 nm. Besides, we can use alloys
of this system containing practically only Re, for example

© 2008 IOP Publishing Ltd  Printed in the UK
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Figure 2. X-ray diffraction data confirm the amorphous Re model.
The experimental RDFg and model RDF)y; practically coincide.

Reg3V;.  We obtained the experimental radial distribution
function RDFg for amorphous alloy Reg3V; using the x-ray
diffraction method.

Unfortunately, the RDF contains only limited structural
information. To know the atomic arrangement in the structure,
we constructed a computer model of amorphous Re [8-10]
and Re—Tb amorphous alloys [3] using the molecular dynamics
method.

For the description of interatomic interaction in these
systems we used the model potential represented as a
polynomial of the fourth power [11]:

Ci(r —r)* 4 Co(r — 10)* + C3(r — 1)?
Ur) = atr < ry (D)

0 atr > ry.

Here 7, is a cut-off radius of the potential. Coefficients Cj,
C», C3 were found as a solution of the system of three linear
equations which connect the potential energy, its first and
second derivatives with parameters for crystalline analogues:

¢(a) = —AE,
(p/(a) =0 )

y 18K v,

¢ (@) =—7—

where ¢(r) is the potential energy of a crystal calculated per
atom as a sum of pair potentials defined by the formula (1), E,
is the atomization energy, A is a coefficient of order unity, a
is the equilibrium interatomic distance, K is the bulk modulus
and v, is the volume per atom. Introduction of the coefficient
A is caused by the fact that potential energy in the amorphous
and crystalline states is not equal. The value of A was chosen
so that coincidence of the model and experimental RDF would
be achieved.

Simulation was carried out in a cube with periodical
boundary conditions containing 10* atoms. In these systems
the temperature was rapidly decreased at a rate of 10'° K s~
In the resulting relaxation a dense random packing of atoms
formed.

For the model of pure amorphous Re the radial distribution
function RDF); was calculated. Comparing RDFs we can see
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Figure 3. Reduced distribution functions G (r) of Reg;Tbg
amorphous alloy.

that RDFy; and RDFg practically coincide (figure 2). The
reduced RDF G(r) calculated for the model of Reg,Tb;g
amorphous alloy is in good agreement with the G (R) function
obtained from the x-ray diffraction experiment [12] (figure 3).
For the models of the Regp_,Tb, (x = 36, 53, 71 and 89 at.%)
amorphous alloys the positions and shape of the first peaks and
the positions of the following peaks on the RDFs also agree
with the experiment. The atomic arrangement obtained was
the object of further study in the framework of the percolation
theory.

3. Percolation in a one-component amorphous metal

We consider the cluster as a group of atoms that are at a
distance from each other not exceeding a formal parameter
s. If we change s for the same structure, the number, form
and size of the clusters also change. When s < (0.6-0.7) ry,
there are no clusters in the structure, but if s > (1.1-1.4) r;
there is just one infinite cluster, containing all the atoms of
the system. The clusters at intermediate s values are more
interesting. Increasing s increases the number and size of
the clusters (figure 4). The figure shows projections of the
three greatest clusters to a main cube face (left-hand figures)
and the cluster distributions by size (right-hand figures). The
number of atoms in the largest cluster NV, is also shown. When
the value of s = s, = (0.94 & 0.01) r; the percolation
transition takes place, i.e. a large cluster forms which connects
the opposite faces of the cube [5]. It is a geometrical phase
transition [2, 9]. The cluster distribution by size shows the
percolation transition with greater accuracy. Here we can see
how the largest cluster (right-most vertical line) step by step
comes off the dense quasi-continuous spectrum.

The analysis of the percolation cluster shows that its
mass dimensionality is lower than topological one, i.e. it is
a fractal object [5, 13]. The number of atoms located inside
a sphere of radius R is N = kRP? (figure 5(a)), where D is
fractal dimensionality. We have approximated the dependence
In N = f(In R) by a linear dependence using the least squares
technique. Averaging D by 30 realizations of the 10000-
atom structure we obtained D = 2.5 £ 0.2. This coincides
with the classical value for lattice models D = 2.55. We
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Figure 4. Influence of increasing formal parameter s on the cluster structure of the amorphous Re model. Projections of the three largest
clusters (black circles, largest; gray, the second largest; white, the third largest) (on the left-hand side) and cluster distribution by size (on the
right-hand side); N is the number of atoms in a cluster and nN is the total number of atoms within the N-atom clusters.

also obtained the fractal dimensionality in another way—using
cluster distribution by size (figure 4). This gives practically the
same value for D.

The number N of atoms within the largest cluster
depends on s as a diffuse step (figure 5(b)). Such a step is
typical for the temperature dependence of an order parameter.
So percolation is really a geometrical phase transition. We
suppose that ‘diffusion’ of the step is connected to the degree of
disarray of the structure. An additional computer experiment
on structure annealing shows that the ‘diffusion’ decreases (the
step becomes sharper) after annealing. Besides, this ‘diffusion’
is correlated to the half-width of the first RDF peak.

4. Percolation in binary amorphous alloys

Atomic clusters in the models of Re-Tb amorphous alloys
were defined as follows: a cluster is a group of atoms of one
type (terbium) which are in direct contact with each other,
i.e. they are the nearest neighbors. The percolation radius r,
(the parameter which determines whether an atom belongs to
the cluster) was chosen to be equal to the distance to the first
minimum of the partial RDF grp_1p(r): 7. = 0.4329 nm =
1.22dp.

We show in figure 6 the partial structure of the subsystem
of Tb atoms (the projection on the XY plane) for several
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Figure 5. Number N, of atoms: (a) of the largest cluster which are within the sphere (radius R changes from the mean interatomic distance r;
to half of the cube linear size); (b) within the largest cluster, depending on s as a ‘diffuse step’.

compositions and the corresponding size distribution of
clusters N —n N, where N is the number of atoms in the cluster
and 7 is the number of clusters having the size N. The largest
cluster is shown with links between neighboring atoms.

In figure 6(a) the subsystem of Tb atoms for 10% Tb is
shown. Black circles represent atoms in the largest cluster in
the model. White circles represent the rest of the Tb atoms.
The Re atoms are not shown. It is seen that at 10% Tb a great
number of small clusters exist, all the clusters are friable and
extensive, and there are no compact ones.

Then we increased the concentration of the Tb atoms by
just 3% (figure 6(b)). At concentration of 13% Tb one large
cluster is formed which connects two opposite sides of the
basic cube. Thus, near this concentration a percolation cluster
is formed and percolation transition takes place. To check the
presence of percolation the thin boundary layer was considered
near each side of the cube. Percolation was registered only
when the same cluster had at least two atoms in boundary
layers belonging to opposite sides of the cube. The shape of
the size distribution of clusters changes when changing the
concentration of the Tb atoms. At 13% Tb one large cluster is
distinguished, the number of small clusters rapidly decreases.

Then we increased the concentration of the Tb atoms by
2%. 1In figure 6(c) the subsystem of the Tb atoms for 15%
Tb is represented. At this concentration almost all the atoms
belong to the largest cluster. With increasing concentration of
Tb atoms the number of small clusters rapidly decreases. The
small clusters associate with the largest cluster. The large and
then the small pores in it disappear, and the cluster becomes
compact.

The dependence of probability P(x) that an atom belongs
to the largest cluster with increasing concentration of Tb atoms
is shown in figure 7. It has a shape which is characteristic of
geometrical phase transitions and represents a diffuse step. The
value of P (x) was determined as the ratio of the number of the
Tb atoms in the largest cluster to the total number of the Tb
atoms in the system.

As is known from percolation theory, the percolation
cluster is a fractal object [5, 13]. Fractal properties of the
percolation cluster are connected with its scale invariance
(self-similarity): the cluster has pores of all sizes, from the
atomic diameter up to the size of the basic cube, as can be
seen in figure 6(b). The value of fractal dimensionality of

the percolation cluster is D 2.5; it was averaged over
10 realizations of the model (figure 8). It is close to the
theoretical value D = 2.55 for well-known lattice percolation
problems [2, 11].

5. Concentration dependence of the percolation
radius

Different physical interactions can have different characteristic
radii. Therefore, in the general case, the percolation radius
re is not constant. At any concentration of terbium atoms
x > 0 we can find the value r. at which this composition
will be situated on the percolation threshold. To investigate
the dependence r.(x) models of Rejgo_,Tb, (x = 1, 2, 3, 5,
10, 13, 15, 18, 36, 53, 71 and 100 at.%) amorphous alloys were
constructed. The results were averaged over 10 realizations for
every composition.

In order to analyze the influence of short-range order on
concentration dependence of the percolation radius we also
calculated concentration dependence of the percolation radius
for the model of a random arrangement of atoms which is
uniform over all the simulation volume. This problem of
random sites is completely equivalent to that known from the
percolation problem of spheres in the literature [14]. The sizes
of the cube and the number of Tb atoms were given according
to the compositions indicated above. The results of calculation
were also averaged over 10 realizations for every composition.

In figure 9 the concentration dependence of the percolation
radius is given, i.e. at each concentration of Tb atoms a value
of the percolation radius was found at which the percolation
cluster was formed for the first time. In other words, this cluster
is on the percolation threshold. Such dependence is calculated
for the models of Re—Tb amorphous alloys (black circles) and
for a random distribution of atoms (white circles).

The percolation radius depends on the concentration of Tb
atoms and the volume of the simulation cube V. But volume
of the cube V, in its turn, also depends on the number of
Tb atoms. For a random arrangement of atoms the following
equality must be fulfilled because of scale invariance of the

problem:
re

(©)
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where A is constant.
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Figure 6. Projection of the subsystem of Tb atoms for Rejgo_Tb, ((a) x = 10, (b) x = 13, (¢) x = 15 at.%) amorphous alloys on the XY
plane and the size distribution of clusters. N is the number of atoms in a cluster, n is the number of clusters with the size N.

It is expedient to consider another dimensionless
parameter which does not depend on the number of atoms It
is expressed by the formula

B. = 37Cr;, 4)
where C is the volume atomic concentration.

In figure 10 we present the concentration dependence of
the parameter B.. It is known that for a random arrangement of
atoms (for the problem of spheres) the value of B, is constant
and equal to 2.7 £ 0.1 [14, 15]. It is seen from figure 10 that
for x = 13-100 at.% Tb the value of B, does not depend on

the concentration of Tb atoms and its average value is B, =
2.75. At low concentrations (x 1-10 at.%) considerable
deviations from the mean value are observed due to the scale
effect connected with the small size of the system [14, 15].
For an amorphous structure statistically significant
deviations from the r.(x) and B.(x) curves for a random
distribution of atoms are observed in figures 9 and 10. These
deviations are connected with the presence of short-range order
in the amorphous structure. The decreasing curves for the
amorphous structure at x = 15-53 at.% Tb are connected with
the proximity of the percolation radius to the first maximum
of the partial RDF gr,_1y(r). At distances r re a large

o
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Figure 9. Dependence of the percolation radius on the concentration
of Tb atoms.

number of Tb atoms exist, and this facilitates formation of the
percolation cluster.

Thus, B, and r. are structure sensitive parameters and
their dependence on the concentration of Tb atoms correlates
with RDF. The values of fractal dimensionality averaged over
all compositions for the amorphous structure and for random
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—O—random arrangement of atoms
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Figure 10. Dependence of the parameter B, on the concentration of
Tb atoms.
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Figure 11. Phonon spectra of the amorphous Re model.

arrangement of atoms coincide (D = 2.5) and are close to
the theoretical value D = 2.55 for three-dimensional lattice
problems. This agrees with the fact that critical exponents
B and v are determined by properties of the system with an
infinite increase in its size and, thus, they cannot be sensitive to
the structure of short-range order. The obtained result confirms
the assumption [14] that the critical exponents for continuous
percolation have the same values as for the lattice problems,
since they do not depend on the geometry of a lattice.

6. Percolation in amorphous metals and their
physical properties

A percolation cluster is a region of major compression in
an atomic structure. So it plays the role of the skeleton of
amorphous metals. The fractal skeleton can be displayed by
studying some mechanical properties. For example, we have
calculated the phonon spectrum of the model structure by
Fourier transformation of the autocorrelation velocity function
(figure 11). A partial phonon spectrum for the percolation
cluster is sharper and more intense than for the atoms that do
not belong to the percolation cluster.

The density defects of Egami and Vitek [16], which were
determined for a 10% density level, were local. We have
shown that if we determine the defects for a density level of
6% (ri — 0.94r; = 0.06r;) the defects should be continuous
and form a percolation skeleton.
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We also expect that a percolation cluster influences the
magnetic, electrical and optical properties of an amorphous
material. To feel the fractal nature, any external influence
must be comparable in linear size with the critical percolation
radius [17].

The proposed percolation model for binary amorphous
alloys can be useful for a description of the magnetic
properties of amorphous alloys in which the atoms having their
own magnetic moment (Tb) are randomly distributed in the
paramagnetic matrix (Re).

In Re-Tb amorphous alloys in the wide compositional
region a maximum in the temperature dependence of the
dynamic magnetic susceptibility x (7") and the irreversibility
of magnetization M (T) is observed [18]. This is evidence of
the spin-glass phase transition. The transition temperature 77
increases with increasing concentration of magnetic ions. The
transition is observed only in alloys containing more than 13%
of magnetic atoms, i.e. the magnetic ordering is observed only
above the percolation threshold in the system.
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